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Phase-constrained parallel MR image reconstruction
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Abstract

A generalized method for phase-constrained parallel MR image reconstruction is presented that combines and extends the con-
cepts of partial-Fourier reconstruction and parallel imaging. It provides a framework for reconstructing images employing either or
both techniques and for comparing image quality achieved by varying k-space sampling schemes. The method can be used as a par-
allel image reconstruction with a partial-Fourier reconstruction built in. It can also be used with trajectories not readily handled by
straightforward combinations of partial-Fourier and SENSE-like parallel reconstructions, including variable-density, and non-
Cartesian trajectories. The phase constraint specifies a better-conditioned inverse problem compared to unconstrained parallel
MR reconstruction alone. This phase-constrained parallel MRI reconstruction offers a one-step alternative to the standard combi-
nation of homodyne and SENSE reconstructions with the added benefit of flexibility of sampling trajectory. The theory of the
phase-constrained approach is outlined, and its calibration requirements and limitations are discussed. Simulations, phantom exper-
iments, and in vivo experiments are presented.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Parallel acquisition techniques [1–9] in magnetic reso-
nance imaging (MRI) enable reductions in imaging time
through the use of multiple receiver coils. Spatial infor-
mation from the coils is used to replace a portion of the
spatial encoding traditionally accomplished using mag-
netic field gradients. A reduced data set is collected
and the data points that were omitted from the acquisi-
tion are effectively recovered by exploiting the separate
coil ‘‘views.’’
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Other techniques have also created images from re-
duced data sets. Constrained reconstructions [10], for
example, effectively fill in k-space lines not acquired dur-
ing the scan using a priori knowledge about the data or
the object being imaged. Phase-constrained (commonly
referred to in the literature and in this paper as ‘‘par-
tial-Fourier’’) techniques, in particular, like the tech-
nique of Margosian et al. [11], homodyne detection
[12], or Projection Onto Convex Sets (POCS) [13–16],
exploit a known Hermitian data symmetry. These tech-
niques use only half of k-space and a low-resolution
phase map to reconstruct a full image.

There are many reasons to consider combining par-
tial-Fourier and parallel MR. For example, by reducing
imaging time, various combinations of these methods

mailto:jwillig@ucdavis.edu


188 J.D. Willig-Onwuachi et al. / Journal of Magnetic Resonance 176 (2005) 187–198
have been demonstrated to improve the performance of
real-time imaging [17], improve the spatial resolution of
single-shot imaging [18,19], enable whole-heart coverage
in a single breath-hold for calculation of the ejection
fraction [20], and acquire whole brain three-dimensional
susceptibility-weighted data in 0.5 s with a PRESTO
sequence [21]. Despite these reasons, there are also po-
tential pitfalls. Although combining partial-Fourier
and parallel MR can be straightforward under certain
prescribed circumstances, it is in general an interesting
and non-trivial problem deserving closer examination.

Typically, the parallel MR and partial-Fourier recon-
structions are performed in two (or more) separate
steps. The type of parallel reconstruction being used,
however, determines the order in which these steps must
be performed. The most natural order, when using a ‘‘k-
space’’ reconstruction like GRAPPA or SMASH, is to
perform the parallel reconstruction first, followed by
the partial-Fourier reconstruction. On the other hand,
when using an ‘‘image-space’’ reconstruction like Carte-
sian SENSE, a partial-Fourier reconstruction or a zero-
filling operation must be performed first to generate a
regularly aliased image to unfold. One of the more ro-
bust algorithms uses homodyne detection and SENSE
[22]. The homodyne partial-Fourier reconstruction [12]
uses a �conjugate doubling� and a phase correction,
where the high frequency data on the acquired side of
k-space is doubled to compensate for the missing signal
power in the high frequency region on the skipped side
of k-space. Alternative techniques for combining
SENSE and partial-Fourier have only recently been dis-
cussed [23–26]. Also, the particular reconstruction
scheme will determine the allowable k-space sampling
patterns and the feasible methods for implementation,
including measuring the phase map and coil sensitivities.
The algorithm should be carefully planned for each new
implementation because of the many variables involved.

In this paper, we describe a novel method of com-
bining parallel MRI and phase-constrained concepts
into a single reconstruction. This method can be used
as an alternative to the homodyne SENSE technique
or as a method of constraining the inversion for stan-
dard SENSE techniques. Additionally, the general for-
malism we present enables the reconstruction of a wide
variety of undersampled datasets. We refer to this as a
�phase-constrained� parallel MRI reconstruction as op-
posed to a �partial-Fourier� parallel MRI reconstruc-
tion, because it can be applied to data that is
symmetric (as opposed to asymmetric or one-sided) in
nature. It can be used more generally to constrain or
improve the matrix inversion for parallel imaging
reconstruction. The theory of phase-constrained paral-
lel MR image reconstructions will be discussed, imple-
mentations in phantoms and in vivo will be
demonstrated, and caveats and limits for practical
implementation will be outlined.
2. Theory

2.1. Phase-constrained equations and image

reconstruction

The central concept behind phase-constrained paral-
lel MRI reconstruction is to exploit a priori knowledge
of the image phase to reduce the number of unknowns
in the reconstruction. This results in better conditioning
or increased overdetermination of the matrix to be
inverted. Below, we outline the central inverse problem
associated with parallel MR image reconstruction, and
then we describe how this equation can be modified to
take advantage of prior knowledge of the image phase.

The radiofrequency (RF) MR signal induced in a giv-
en coil (indexed by l) from spin excitation in an arbitrary
volume can be written, after demodulation by the Lar-
mor frequency, as an integral of the magnetization den-
sity, q against the coil sensitivity, Cl, and the sinusoidal
phase modulations induced by the gradient coils

SlðkÞ ¼
Z

drqðrÞClðrÞe�i2pk�r. ð1Þ

This integral equation can be discretized and written in
the form of a matrix equation

S ¼ Eq. ð2Þ
Here, S is a vector, with elements Sp ” Sl(k), containing
the measured signal data in all coils, where every combi-
nation of k-space index, k, and coil index, l, maps onto a
unique row index, p. The magnetization density is also
represented by a single column vector, q, with elements
qj ” q(rj), where rj is the position of the center of voxel j.
The encoding matrix, E, which contains the coil sensitiv-
ity and gradient coil modulations, has matrix elements
defined by Epj ” Cl (rj)exp(�i2pkrj), where again p index-
es combinations of l and k values. Eq. (2) can be written
in explicit real representation as

Re Sð Þ
Im Sð Þ

� �
¼

Re Eð Þ �Im Eð Þ
Im Eð Þ Re Eð Þ

� �
Re qð Þ
Im qð Þ

� �
. ð3Þ

Eq. (3) will prove useful for comparison with an analo-
gous phase-constrained equation below.

The complex image intensity can be written in terms
of its magnitude and phase: qðrjÞ ¼ q̂ðrjÞ expðiuðrjÞÞ,
where q̂ðrjÞ is a real quantity proportional to the magne-
tization density, and u (rj) is the image phase. We can
then rewrite Eq. (2) as

S ¼ Eq ¼ EPq̂; ð4Þ
where q � Pq̂, EP is the new effective encoding matrix,
and P is a diagonal matrix containing the common fully
encoded (unaliased) phase with matrix elements defined
by

Pjj0 �
eiuðrjÞ j ¼ j0;

0 j 6¼ j0.

(
ð5Þ
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Eq. (4) is a complex matrix equation, but can be written
in explicit real representation as

Re Sð Þ
Im Sð Þ

� �
¼

Re EPð Þ
Im EPð Þ

� �
q̂ ð6Þ

or

�S ¼ �Eq̂ where �E �
Re EPð Þ
Im EPð Þ

� �
and �S �

Re Sð Þ
Im Sð Þ

� �
.

ð7Þ
The solution vector q̂ in the constrained problem

Eq. (6) is half the size of the solution vector in the
standard problem Eq. (3), because the imaginary part
of the magnetization density is assumed to be zero.
Consequently, the constrained problem is twice as
overdetermined as the unconstrained problem, and
the level of undersampling at which the encoding ma-
trix remains invertible is twice what it is for the uncon-
strained case, assuming the constraint is valid and the
rows of �E are linearly independent (as discussed be-
low). This means fewer lines need to be acquired. Addi-
tionally, at a given acceleration, more degrees of
freedom are available for SNR optimization, which
reduces noise amplification compared with the uncon-
strained case alone. Note also that because of the use
of an encoding matrix, this method allows for a
straightforward calculation of noise amplification,
including any effects of the phase constraint.

Maximal SNR is achieved by using a modified
Moore–Penrose pseudoinverse [3,7,27]

�Einverse ¼ �E
y �W

�1�E
� ��1

�E
y �W

�1
; ð8Þ

where the superscript � represents the Hermitian adjoint
and �W is a modified version of the noise covariance ma-
trix representing the correlation of noise between the
real and imaginary channels

�W ¼
hRenlRenl0 i hImnlRenl0 i
hRenl Imnl0 i hImnl Imnl0 i

� �
� Idk. ð9Þ

The brackets, Ææ, indicate a time average over noise sam-
ples, n. A subset of coil indices, l and l 0, is shown to indi-
cate the matrix structure, and the direct product with the
identity, Idk, indicates that these elements are replicated
for all k-space indices. This inversion, as it is written, is
like SENSE but can be tuned to be more SMASH-like
or GRAPPA-like by inverting smaller sub-blocks of
the encoding matrix [7]. In practice, �W may be measured
by acquiring noise records in all coils, (e.g., in a short
noise-only scan), separating them into real and imagi-
nary parts, and computing the relevant correlations.
This procedure is essentially equivalent to the one used
for unconstrained reconstructions, but with separated
real and imaginary channels.

The expression for SNR in the constrained recon-
struction is analogous to that for the unconstrained
case. The SNR loss compared to a fully gradient-encod-
ed image is quantified by the noise amplification factor,
or geometry factor, g [3]. To calculate the g-factor, we
first express the noise variance, r2

j , in any voxel j of
the reconstructed image as the diagonal element of a
transformed noise covariance matrix, as in [3]

r2 ¼ �Einverse
�W�E

y
inverse

� �
jj
¼ �E

y �W
�1�E

� ��1

jj
. ð10Þ

The g-factor is then proportional to the ratio of the
noise standard deviation, rj, to the corresponding rfull

j ,
which would have been obtained in an unaccelerated
reconstruction. This ratio is scaled by the square root
of the acceleration factor, R (relative to the correspond-
ing fully sampled full-Fourier dataset), to account for a
loss in temporal averaging and yield a pure measure of
the SNR loss from geometric factors alone [3]

g ¼ 1ffiffiffi
R

p rj

rfull
j

. ð11Þ

The value of rj in the numerator of Eq. (11) may be cal-
culated from �Einverse and �W as shown in Eq. (10). The
value of rfull

j may be calculated using the unconstrained
version of Eq. (10) with R = 1. For k-space trajectories
on a Cartesian grid, rfull

j reduces to the square root of
the simplified expression in Eqs. (20–21) of [3], which
can be written in the current notation as

rfull
j ¼ 1ffiffiffiffiffiffiffiffiffi

Npix

p X
l

X
l0

C�
l ðrjÞW�1

ll0 Cl0 ðrjÞ
 !�1=2

. ð12Þ

Here, the elements of the standard noise resistance ma-
trix, Wll0 ¼ hnlnl0 i, describe correlations among complex
noise records, and Npix is the number of pixels in the
phase-encode direction.

2.2. Coil sensitivity calibration and phase estimation

The phase variations in Pmay arise from the transmit
RF phase, gradient non-linearities, susceptibility varia-
tions, special techniques such as flow encoding, or vari-
ous other sequence-dependent factors. Independently
acquired phase information, for example from a body
coil image, may be used to generate P for a phase-con-
strained (also referred to in this paper simply as con-
strained) reconstruction. Additional images are not,
however, required. Measuring the coil sensitivities in
vivo [7] can provide both the sensitivity and phase cali-
bration in the same scan. Whether acquired simulta-
neously or separately, the sensitivity and phase
calibration can be acquired quickly at low resolution.

For in vivo sensitivities, reference component-coil
images in the target image plane are obtained from a
separate acquisition or from a set of central k-space lines
[28]. These images, which may be of lower spatial reso-
lution than the target image, can be used for coil calibra-
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tion but also contain information about the target object
and its phase. As a result, an encoding matrix construct-
ed using the reference images in place of the coil sensitiv-
ities will contain the phases needed for the constrained
reconstruction, assuming the phase properties of the ref-
erence and acquisition scans match, and assuming the
resolution of the reference set is sufficient. We can see
how this works by considering the steps detailed below.
Eq. (4) can formally be rewritten as

S ¼ EeffM�1q̂; ð13Þ
where the matrix elements of M are defined by

Mjj0 �
q̂refðrjÞ j ¼ j0;

0 j 6¼ j0;

(
ð14Þ

q̂ref is the magnitude of the reference magnetization den-
sity (from the reference images), and Eeff ” EPM is the
new effective encoding matrix. Note that apparent prob-
lems that arise with Eq. (13) when q̂refðrjÞ ¼ 0 can be
handled easily in the inversion, as this is somewhat of
an artificial zero-over-zero occurrence. The pseudoin-
verse is based on singular value decomposition and dis-
cards singular values less than a specified tolerance (we
just use machine precision). All factors originating from
the reference magnetization density may be removed by
post-multiplication

q̂ ¼ MEeff
inverseS. ð15Þ

This is analogous to the use of in vivo sensitivities in [7].
In practice, we simply construct the encoding matrix
using the reference images (rather than sensitivity maps),
perform the reconstruction (multiply the signal vector
by the inverted effective encoding matrix), and multiply
the result by the square root of the sum of the squared
reference images (this quantity approximates M). The
constrained form of Eq. (13) follows naturally:

Re Sð Þ
Im Sð Þ

� �
¼

Re EPMð Þ
Im EPMð Þ

� �
M�1q̂. ð16Þ
2.3. k-Space trajectories and symmetry

When using this technique for improved parallel
imaging alone (i.e., comparing constrained and uncon-
strained reconstruction, as opposed to comparison with
other combined parallel and partial-Fourier algo-
rithms), the benefits resulting from constrained versus
unconstrained reconstruction depend both upon the sen-
sitivity patterns of the coil array and upon the symmetry
of the data about k = 0. To maximally benefit from the
constraint, both the real and the imaginary parts of each
encoding function (row of �E) should be distinct. This
condition breaks down if any two rows of the standard
encoding matrix E are complex conjugates of each
other—leading to a twofold degeneracy in the corre-
sponding four lines of �E (lessening the overdetermina-
tion associated with the constraint). This situation can
arise if the coil sensitivity Cl(r) is purely real and if the
phase encoding scheme contains pairs of conjugate k-
space lines, e.g., {�4,�2,0,2,4}. Numerically real sensi-
tivities do occur in selected circumstances, for example
along an axis of symmetry oriented in the direction of
the main magnetic field, but in most cases of practical
interest coil sensitivities will have distinct phases, allow-
ing improved reconstruction of full-Fourier trajectories.
For numerically real sensitivities, trajectories that do not
include pairs of conjugate k-space lines, e.g.,
{�5,�2,1,4}, guarantee distinct encoding functions,
and may yield additional gains. In the general case
(complex sensitivities), the distinctness of encoding
functions has a more complicated dependence on coil
geometry, acceleration factor, image plane orientation,
and k-space trajectory.
3. Methods

Simulations were performed to test the basic theory
for phase-constrained parallel image reconstruction.
Simulation results were then verified with phantom
and in vivo experiments.

For the simulations in Fig. 1, comparing reconstruc-
tion algorithms, a slowly varying phase (diagonal ramp
from �p to p), illustrated on the right of row (A), was
imposed on a real-valued 64 · 64 voxel image, plotted
on the left of row (A). This complex image was multi-
plied by coil sensitivities calculated using the Biot–Sav-
art Law for a planar array of four loop elements. The
simulated loops were 30 · 6 cm, spaced by 9 cm in the
narrow dimension, and located 9 cm from a coronal im-
age plane. The principal axis of the array and the phase-
encode axis were oriented in the left-right direction. The
FOV was 30 cm square. Gaussian noise with standard
deviation of 3% of the image maximum was added to
the resulting component coil images. These images were
Fourier transformed, and various combinations of
phase-encode lines were selected to mimic undersampled
datasets. For comparison of the reconstructed image or
phase, Irecon, with the target image, Itarget, a difference
image, D was computed using the following formula

D ¼ j Irecon j � j Itarget j
�� ��. ð17Þ

Also, for each difference image, the root-mean-square
(RMS) error is quoted. The value of D was averaged
over all pixels in the displayed region. The only excep-
tion to this is Fig. 1F, which only averaged over the cen-
tral rectangular region (44 · 50 pixels) to exclude noise
errors that are large in magnitude but insignificant to
the reconstruction. Results are shown as a percentage
of the reference image (or phase) maximum. For
Fig. 1, Irecon was first normalized by the ratio of its mean



Fig. 1. Simulation comparing different combinations of partial-Fou-
rier and parallel MRI reconstructions. The target image and phase are
shown in (A) on the left and right, respectively. All reconstructions are
of full-FOV 64 · 64 images from phase-encode lines
k = {�8,�6 . . .28,30}. The reconstructed image or phase is shown in
the left column and the difference from the target (normalized to
neglect overall magnitude errors) is shown in the right column: (B)
phase-constrained reconstruction (with a low-resolution external phase
calibration—lines used for calibration only, not reconstruction), (C)
serial Margosian and unconstrained reconstruction, and (D) the
homodyne SENSE algorithm. A zero-filled SENSE reconstruction is
shown in (E) and a low-resolution phase reconstruction using SENSE
is shown in (F). The phase-encode direction is left-right. All images are
scaled the same relative to their own mean. RMS error values for each
reconstruction are shown to the right of the difference images as a
percentage of the reference image maximum (RMS error value for the
phase in (F) was computed only over the central portion of the image).
Colorbars for all phase images are labeled in radians.
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to the mean of Itarget. The simulations in Fig. 1, partic-
ularly the homodyne SENSE and Margosian SENSE
reconstructions, tended to have larger errors in overall
magnitude, which are less significant than structured
artifacts. Normalization resulted in a smaller and fairer
accounting of reconstruction errors by neglecting overall
magnitude differences.

The experimental data presented were acquired on a
GE TwinSpeed 1.5 T imaging system with EXCITE
technology (GE Medical Systems, Milwaukee, Wiscon-
sin, USA) using fast spin echo (FSE-XL) sequences.
The phantom data were acquired with TE = 42 ms,
TR = 1000 ms, echo train length (ETL) = 4, bandwidth
(BW) = ±31.25 kHz, FOV = 340 mm, slice thickness
(TH) = 5 mm, and matrix size = 256 · 128 (all matrix
sizes given list the frequency encoding direction first
and the phase encoding direction second). The abdomi-
nal data were acquired with TE = 60 ms, TR = 1000 ms,
ETL = 8, BW = ±31.25 kHz, FOV = 370 mm,
TH = 5 mm, and matrix size = 256 · 192. The head data
were acquired with TE = 85 ms, TR = 4650 ms,
ETL = 16, BW = ±20.53 kHz, FOV = 220 mm,
TH = 5 mm, and matrix size = 320 · 256. The phantom
and abdominal data were acquired using a custom de-
signed coil array (Nova Medical, Wakefield, Massachu-
setts, USA) with four independently positionable
89 · 178 mm rectangular elements and low input-imped-
ance preamplifiers. The elements were arranged in a
non-overlapping fashion in the left–right direction
across the bottom of the phantom or the back of a
healthy volunteer. The image plane was coronal and
parallel to the array plane. The head data were acquired
using the standard GE eight-channel brain coil with the
elements arranged around the circumference of the
head. The image plane was axial.

Two separate fully sampled data sets were acquired in
each case. One was Fourier decimated to yield regularly
undersampled data (e.g., for R = 4 in Fig. 2, every
fourth phase-encode line was used, for a total of 32)
or partial-Fourier style data. The other data set was
used for coil sensitivity and phase calibration. This
method provides an identical target image for various
sampling and reconstruction schemes, while in theory
mimicking the exact behavior of directly acquired ali-
ased data (except that the relaxation properties may dif-
fer for multi-echo excitation sequences—such as those
used in this article—for which the potential benefits of
accelerated acquisition resulting from reduced T2 decay
are likely to be understated). Having a common target
image allows a more straightforward comparison of
the performance of various reconstruction techniques.
The calibrations for Fig. 2 and Table 1 employed full
resolution along the phase-encode direction. Calibration
data for Figs. 3 and 4 had one-half the spatial resolution
of the undersampled data in the phase-encode direction.
Calibration data for Fig. 5 had one-quarter the spatial



Fig. 2. Phantom images from constrained parallel reconstructions
(bottom two rows) of four-channel data with acceleration factor, R, of
1 through 8. Unconstrained reconstructions are shown in the top row
for R of 1 through 4. All examples shown are symmetrically
undersampled.

Table 1
Changes in SNR with increasing acceleration factor, R (relative to fully
sampled full-Fourier trajectory), for in vivo data

R = 1 R = 2 R = 3 R = 4

Unconstrained SNR, SNR
SNRðR¼1Þ

D E
pix

1 0.643 0.417 0.244

Constrained SNR, SNR
SNRðR¼1Þ

D E
pix

1 0.675 0.500 0.372

Change in SNR, SNRpc

SNRuc

� �
pix

1 1.06 1.24 2.05

The 1st and 2nd rows show the degradation in average SNR relative to
the baseline (R = 1) images using unconstrained and phase-con-
strained reconstructions respectively see Eq. (18). The 3rd row shows
the average increase in SNR of the phase-constrained reconstruction
(pc) versus the unconstrained reconstruction (uc) [see Eq. (19)]. All
calculations show relative changes that result from noise amplification
(g-factor) alone, and all examples were symmetrically undersampled.

Fig. 3. Comparison of various 5-fold accelerated reconstructions using
four-coil in vivo data. The fully sampled reconstruction is shown on
the left in (A). The image in the right column of (A) is a phase-
constrained reconstruction using phase-encode lines
k = {�21,�18,�15, . . .90,93} (partial-Fourier style data with 3-fold
undersampling) and an external half-resolution coil and phase
calibration. Close-ups of the region near the right kidney are shown
in the lower portion of the figure for various sampling and
reconstruction methods. The reconstructed image is shown in the left
column, and the difference from the fully sampled target image is
shown in the right column: (B) fully sampled reference reconstruction,
(C) phase-constrained reconstruction of regularly undersampled data
with 5-fold undersampling k = {�96,�91,�86, . . .89,94} and half-
resolution coil and phase calibration, (D) phase-constrained recon-
struction of partial-Fourier style data with 3-fold undersampling
k = {�21,�18,�15, . . .90,93} and half-resolution coil and phase
calibration, (E) homodyne SENSE reconstruction of the same data
as in (D), and (F) homodyne SENSE reconstruction of the same data
as in (D) using a full-resolution external phase calibration. The phase-
encode direction is left-right. All comparable images are scaled the
same. RMS error values for each reconstruction are shown to the right
of the difference images as a percentage of the reference image
maximum.
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resolution of the undersampled data in the phase-encode
direction. Difference images in each case were generated
as in Eq. (17).

Images were produced using both phase-constrained
and unconstrained reconstructions. The traditional
encoding matrix E or the constrained encoding matrix
�E was formed as outlined in the Theory section, inverted,
and multiplied by the appropriate signal vector to yield
an image. A serial combination of standard Margosian
[11] and unconstrained reconstructions was used for
Fig. 1C. The algorithm used for Figs. 1D, 3E, 4E, and
5D using homodyne detection with SENSE, is described
in [22]. First, the high spatial frequency data were dou-
bled to compensate for only having half of the high fre-
quency components, a ramp filter was used for the
central portion of the data to reduce Gibbs artifacts by
imposing a smooth transition from 0 to 2, and a set of
partial FOV aliased coil images was generated. Then
two SENSE reconstructions were performed, one on
these partial FOV images, and one on the corresponding
low resolution partial FOV images. The phase of the low
resolution SENSE reconstruction was used for phase
correction of the full resolution reconstruction.
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Changes in SNR relative to baseline (R = 1) images
that result from noise amplification can be computed
from the inverse of the ratio of noise levels, SNR/
SNRfull = rfull/r [3]. The g-factor already contains this
information (Eq. (11)), and thus was used to compute
the decreases in SNR shown in Table 1 (see Eq. (24)
from [3]):

SNR

SNRðR¼1Þ

	 

pix

¼ 1

g

	 

pix

1ffiffiffi
R

p . ð18Þ

Here, the angle brackets represent an average over all
pixels. Average increases in SNR resulting from applica-
tion of the phase constraint were computed by averaging
a pixel-by-pixel ratio of the unconstrained to con-
strained g-factor maps over the image plane

SNRpc

SNRuc

	 

pix

¼ guc

gpc

	 

pix

; ð19Þ

where pc (uc) stands for phase-constrained (uncon-
strained). g-factor maps were calculated using Eq. (11).
For unaccelerated magnitude images, the SNR was cal-
culated by selecting signal and noise-only regions and
accounting for the Rician distribution of noise using
the methods in [29].

All calculations were performed using MATLAB
Version 7, Release 14 (The MathWorks, Natick, MA)
on a Macintosh PowerBook G4 with 1 GHz processor
and 1.25 GB DDR SDRAM memory. Code for recon-
struction was not necessarily optimized, but we provide
here some example reconstruction times for reference.
The Margosian SENSE, homodyne SENSE, and
phase-constrained reconstructions shown in Fig. 1 took
14.5, 39.1, and 9.84 s, respectively. The full-Fourier con-
strained, partial-Fourier constrained, and homodyne
SENSE reconstructions in Fig. 3 (rows C–E) took
64.2, 82.6, and 85.4 s, respectively. The SENSE, full-
Fourier constrained, partial-Fourier constrained, and
homodyne SENSE reconstructions in Fig. 4 (rows
Fig. 4. Comparison of various 5-fold accelerated reconstructions using
eight-coil in vivo data. All images are cropped to show better detail.
The reconstructed image is shown in the left column, and the difference
from the fully sampled target image is shown in the right column: (A)
fully sampled reference reconstruction, (B) unconstrained reconstruc-
tion of regularly undersampled data with 5-fold undersampling
k = {�128,�123,�118, . . .122,127} and half-resolution external coil
calibration, (C) phase-constrained reconstruction of the same data as
in (B) with half-resolution external coil and phase calibration, (D)
phase-constrained reconstruction of partial-Fourier style data with 3-
fold undersampling k = {�27, �24,�21, . . .123,126} and half-resolu-
tion external coil and phase calibration, (E) homodyne SENSE
reconstruction of the same data as in (D), and (F) homodyne SENSE
reconstruction of the same data as in (D) using a full-resolution
external phase calibration. The phase-encode direction is left-right. All
comparable images are scaled the same. RMS error values for each
reconstruction are shown to the right of the difference images as a
percentage of the reference image maximum.

b



Fig. 5. Comparison of various 3-fold accelerated reconstructions using
eight-coil in vivo data and low-resolution calibration. All images are
cropped to show better detail. The reconstructed image is shown in the
left column, and the difference from the fully sampled target image is
shown in the right column: (A) fully sampled reference reconstruction,
(B) phase-constrained reconstruction of regularly undersampled data
with 3-fold undersampling k = {�128,�125,�122, . . .124,127} and
quarter-resolution external phase and coil calibration, (C) phase-
constrained reconstruction of partial-Fourier style data with 2-fold
undersampling k = {�44,�42,�40, . . .124,126} (still net acceleration
factor of 3) and quarter-resolution external coil and phase calibration,
and (D) homodyne SENSE reconstruction of the same data as in (C).
The phase-encode direction is left-right. All comparable images are
scaled the same. RMS error values for each reconstruction are shown
to the right of the difference images as a percentage of the reference
image maximum.
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B–E) took 259, 237, 144, and 159 s, respectively. The
times quoted for Figs. 3 and 4 correspond to the use
of a standard fast conjugate gradient approach for
inversion (not optimized for real matrix inversion). Each
comparison utilizes the same numerical inversion tech-
nique consistently for all reconstructions.
4. Results

Fig. 1 demonstrates how a simple serial combination
of partial-Fourier and image-space parallel reconstruc-
tions can introduce errors. The target image (left) and
phase (right) are shown in row (A). In this case, the
Margosian reconstruction of an aliased image generates
errors that propagate through the unconstrained paral-
lel reconstruction (C) (seen in this case as magnitude
errors, edge artifacts, and a smearing or loss of resolu-
tion in the phase encode direction), even though the
full-FOV image phase is slowly varying. Similar, but
smaller, errors are seen using a combination of homo-
dyne and unconstrained parallel reconstructions (D)
[22]. For completeness, a zero-filled SENSE reconstruc-
tion without any masking (E) and the SENSE recon-
structed phase (F) are shown. The actual homodyne
SENSE algorithm shown in (D) multiplies the zero-
filled data by a mask prior to reconstruction that soft-
ens the severe transition to zero entries and doubles the
asymmetric high frequency data. These errors do not
appear, however, in the phase-constrained parallel
reconstruction of the same k-space lines, seen in (B).
The central eight lines of the phase were used for cal-
ibration of the constrained reconstruction—the same
number of lines used by the Margosian and homodyne
reconstructions (even-numbered lines of the central 16).
We should clarify that lines used for calibration were
not added to the dataset to be included in the recon-
struction. All reconstructions used the same phase en-
code lines, k = {�8,�6, . . .28,30} out of 64 total. The
simulated phase here is slowly varying—mostly, but
not exactly, specified in the central eight lines of the
Fourier transform.

Fig. 2 displays phase-constrained reconstructions of
four-coil phantom data with acceleration factors
ranging from one to eight. Each image uses symmet-
rically sampled data (standard regular undersampling
as opposed to partial-Fourier style undersampling,
but also symmetrically indexed about k = 0). Uncon-
strained images for R of one to four show the usual
degradation in SNR as the acceleration factor
approaches the total number of coils. In comparison,
the constrained reconstructions show a more gradual
degradation in apparent SNR as the acceleration fac-
tor is increased. Additionally, the constrained recon-
structions here remain artifact-free up to R = 8
(twice the coil count).
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Fig. 3 compares various R = 5 reconstructions of the
abdominal in vivo data using four coils. A 5-fold accel-
erated phase-constrained reconstruction using phase en-
code lines k = {�21,�18,�15 . . .90,93} is shown on the
right in row (A) compared to a fully sampled reference
image on the left. A cropped region of this image is
shown for various other sampling and reconstruction
methods. Reconstructed images are shown in the left
column. Difference images (with respect to the reference
image) are shown in the right column. Row (B) is the
reference image, row (C) is a phase-constrained recon-
struction of full-Fourier undersampled data with
R = 5, k = {�96,�91 . . .89,94}, row (D) is a phase-con-
strained reconstruction of partial-Fourier style data with
line spacing of 3 (still net acceleration of 5),
k = {�21,�18,�15,. . .87,90,93}, row (E) is a homo-
dyne SENSE reconstruction of the same data as in
(D), row (F) is a homodyne SENSE reconstruction of
the same data as in (D) but using a full-resolution exter-
nal phase calibration. The constrained reconstructions
in (C) and (D) both use a half-resolution (96 out of
192 phase encode lines) coil and phase calibration.

Rows one and two of Table 1 quantify, for this in
vivo abdominal dataset, the decrease in average SNR
at acceleration factors of one to four resulting from
g-factor alone (described above and seen qualitatively
in Fig. 2). These reconstructions correspond to those
illustrated in Fig. 2, but for in vivo data. All data
are full-Fourier but regularly undersampled. The num-
bers presented are relative to the SNR of the respective
R = 1 reconstruction for each method, estimated to be
94 and 131 for the unconstrained and constrained
methods, respectively. This difference results from a
noise filtering effect (discussed later) intentionally
excluded from these calculations. Row three of Table
1 illustrates the average increase in SNR from applying
the constraint for R = 1–4, again only including g-fac-
tor effects. Note that Fig. 2 and Table 1 show results
for symmetric sampling schemes only.

Fig. 4 compares various R = 5 reconstructions of in
vivo head data using eight channels. To improve the vis-
ibility of smaller details, only a cropped portion of the
reconstructed image is shown. Reconstructions are
shown in the left column, and difference images (com-
pared to reference) are shown in the right column.
Row (A) is a fully sampled reference image, row (B) is
a standard unconstrained (SENSE) reconstruction of
full-Fourier R = 5 data, k = {�128,�123 . . .122,127},
row (C) is a phase-constrained reconstruction of the
same data as in (B), row (D) is a phase-constrained
reconstruction of partial-Fourier style data with a
phase-encode line spacing of 3, k = {�27,
�24 . . .123,126}, row (E) is a homodyne SENSE recon-
struction of the same data as in (D), and row (F) is a
homodyne SENSE reconstruction of the same data as
in (D) but using a full-resolution external phase calibra-
tion. The reconstructions in (B–D) use half-resolution
coil and phase (for constrained cases only) calibrations.

Fig. 5 illustrates errors that result from inaccurate
phase calibration and reiterates the impact of the choice
of phase encode scheme, particularly for low-resolution
calibration. The same data as in Fig. 4 was reconstruct-
ed with one-quarter resolution phase and coil calibra-
tion (64 out of 256 lines) and a net acceleration factor
of 3. The cropped portion of the reference image is
shown in row (A). The constrained reconstruction of
full-Fourier style data (every 3rd line) is shown in row
(B), k = {�128,�125 . . .124,127}. The constrained
reconstruction of partial-Fourier style data, still with
net acceleration factor of three, but skipping only every
other line is shown in row (C), k = {�44,
�42 . . .124,126}. Row (D) contains a homodyne
SENSE reconstruction of the same data as in (C).
5. Discussion

The phase-constrained parallel image reconstruction
method presented in this paper provides a novel combi-
nation of partial-Fourier and parallel imaging tech-
niques with a rigorous incorporation of the phase
constraint and is capable of avoiding errors arising from
partial-Fourier reconstruction of aliased images. The
potential for these errors is illustrated in Fig. 1. The
example of Fig. 1 is not necessarily representative of
all coils, objects, or phases, but it provides motivation
for further exploration.

From the point of view of partial-Fourier imaging,
our reconstruction can be viewed as a generalized
phase-constrained reconstruction with coil sensitivities
included as prior information. From the point of view
of parallel imaging, the constraint assists in generating
skipped lines in a new way—through conjugate symme-
try. For traditional partial-Fourier trajectories (i.e., for
trajectories with sampling omitted on one side of k-
space), use of this conjugate symmetry provides essen-
tially the same result as a straightforward combination
of parallel MRI with partial-Fourier reconstruction
(assuming that such a combination is successful). How-
ever, the generalized form of the reconstruction pro-
posed here is compatible with many different types of
undersampled k-space trajectories. For example, we
have shown results using full-Fourier trajectories (i.e.,
both sides of k-space sampled) which are either symmet-
ric or asymmetric about k = 0. Variable-density trajec-
tories (such as those used in self-calibrating
reconstructions) can also be used. Even non-Cartesian
trajectories should be possible with this formalism,
though we have not tested any.

For the purposes of exploring this new reconstruc-
tion, we have chosen in some cases to compare its
performance to standard full-Fourier SENSE recon-
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struction. This serves as a good reference point for
which we can quantify meaningful performance related
factors such as SNR and noise amplification. We have
demonstrated that, as expected, when a phase constraint
is imposed on parallel MRI reconstructions, lower noise
amplifications (see Fig. 2 and Table 1) and higher
achievable net acceleration factors (see Fig. 2) are
observed.

For full-Fourier trajectories that are pair-wise asym-
metrically sampled (have unpaired conjugate lines, as
opposed to the asymmetry of partial-Fourier sampling),
some reduction in noise amplification can be achieved
by combining partial-Fourier and parallel MR recon-
structions in two steps. The interlaced placement of ac-
quired and corresponding conjugate lines allows the
filling of lines using symmetry alone. In symmetrically
sampled cases, however, such as Fig. 2 or Table 1, Mar-
gosian or homodyne algorithms cannot generate any
missing lines, and the improvements result only from
the combined effects of coil sensitivity information (mix-
ing predominantly nearby k-space lines) and conjugate
symmetry (mixing only conjugate lines). For such trajec-
tories, one might consider using a more general partial-
Fourier algorithm, such as POCS, in combination with
parallel imaging. Such a combination, however, would
also not involve simple sequential application of existing
techniques. The POCS-SENSE algorithm [26], for exam-
ple, requires recasting the parallel image reconstruction
in terms of an iteratively applied projection.

Phase-constrained parallel MRI reconstruction offers
an alternative to the combination of homodyne detec-
tion and SENSE employed on many scanners (which
by and large we found to be quite robust, certainly more
so than serial Margosian and SENSE reconstructions).
These two techniques generally performed similarly,
with a few exceptions (comparing identical trajectories).
Homodyne SENSE artifacts typically appeared as edge
effects and loss in resolution (e.g., Fig. 4E, errors at edg-
es in the brain or at the center of the CSF). Phase-con-
strained artifacts typically appeared as aliasing effects
(e.g., Figs. 4C and D and Fig. 5B, repetition of the
curved edge of the head), signal dropout where the
phase calibration was inaccurate, or noise amplification
related to the coil sensitivities and reconstruction (g-fac-
tor). The often-structured appearance of artifacts from
phase-constrained reconstruction makes them more dis-
tracting to the eye but could make them tolerable com-
pared to a general loss in resolution if they are located
(by accident or design) in a region of reduced interest.
Key benefits of the constrained approach, however,
are its one-step reconstruction and its flexibility in
choice of sampling trajectories.

The constrained reconstruction extracts the phase
map from the sensitivity calibration, which already must
be acquired for any combination of partial-Fourier and
parallel MRI. We have illustrated situations for which
the homodyne algorithm, even with exact or full-resolu-
tion phase information (Figs. 3 and 4), resulted in great-
er errors than the constrained approach. This was
because of errors introduced by the conjugate doubling
step of the homodyne algorithm. On the other hand, the
phase-constrained reconstruction can produce stronger
localized noise amplification and more noticeable alias-
ing artifacts in some situations. We note, in passing, that
the errors for homodyne SENSE with full-resolution
phase calibration appear larger than those with low-res-
olution phase calibration. This could be because the cal-
ibration was taken from a separate acquisition—making
the high-resolution information especially susceptible to
motion or misalignment problems. The high-resolution
calibration also has more noise, which could impact
the overall noise level and RMS error of the
reconstruction.

As expected, for high accelerations, combinations of
partial-Fourier like trajectories with lower parallel accel-
erations, using constrained reconstruction or the homo-
dyne algorithm, generally performed better than
constrained reconstruction with regular undersampling
and larger parallel acceleration (i.e., combining partial-
Fourier with two-fold undersampling versus four-fold
regular undersampling). This is particularly true for
low-resolution phase calibration. The phase-constrained
reconstruction of regularly undersampled data generally
demonstrated more aliasing artifacts and more severe
sensitivity to phase errors than a combination of par-
tial-Fourier sampling with a lower parallel acceleration.
Aliasing ghosts from parallel reconstruction can be
more conspicuous than the diffuse artifacts or loss in res-
olution that other partial-Fourier techniques produce.
However, the generality of the phase-constrained recon-
struction enables the use of the better performing par-
tial-Fourier type trajectory with a single one-step
constrained reconstruction. Other trajectories remain
to be investigated further.

Phase-constrained reconstruction gives improved
SNR compared with unconstrained reconstruction even
for R = 1 images, despite identical unitary g-factors.
The constrained inversion intrinsically eliminates the
imaginary channel noise. This results in an approxi-
mate

ffiffiffi
2

p
reduction in noise as compared with an

unconstrained magnitude image containing noise from
both real and imaginary channels. Of course, the com-
ponent of the improvement in SNR that results from
noise filtering could also be accomplished by rephasing
an unconstrained reconstruction and taking its real
part. This baseline improvement, then, is not unique
to the constrained case, and it was excluded from the
calculations for Table 1. One benefit of the constrained
technique, however, is that this rephasing occurs
automatically.

An effort should be made to guarantee the accuracy
of the phase calibration for constrained reconstruction,
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because of the potential for errors. Ideally, the underly-
ing phase should be slowly varying and motion between
the calibration and the accelerated scan should be min-
imized. Tissue interfaces with large susceptibility discon-
tinuities can result in rapid phase variations, posing
problems for low-resolution phase maps. The number
of phase calibration lines required depends on many fac-
tors and was not specifically explored in this study. The
limitations of phase calibration need to be explored fur-
ther, along with possible solutions such as phase extrap-
olation or smoothing. Nonetheless, when using modest
parallel acceleration factors with partial-Fourier type
sampling (as opposed to full-Fourier but highly under-
sampled schemes), the constrained reconstruction seems
to be robust, even with low-resolution calibration.
6. Conclusions

We have presented data to illustrate specific benefits
of phase-constrained parallel image reconstructions.
The general formalism of the technique enables the
combination of partial-Fourier and parallel MR imag-
ing into a single-step exact-inversion method and en-
ables the use of atypical sampling schemes that
cannot be handled using traditional combinations of
parallel MRI and partial-Fourier reconstructions. Con-
strained reconstruction improves SNR compared to
unconstrained reconstruction without partial-Fourier
and allows the extension of achievable undersampling
factors beyond the total number of coils used, even
for trajectories that would not normally allow addi-
tional acceleration using partial-Fourier techniques.
This technique can also be used to avoid potential er-
rors introduced by serial combinations of partial-Fou-
rier and SENSE-like reconstructions. Finally, phase-
constrained reconstruction offers a more streamlined
and flexible alternative to combined homodyne and
SENSE reconstructions.
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